
1 

Abstract 
 
A Bayesian inference framework for structural damage identification is presented. 
Sophisticated structural identification methods, combining vibration information 
from the sensor network with the theoretical information built into a high-fidelity 
finite element model for simulating structural behaviour, are incorporated into the 
system in order to monitor structural condition, track structural changes and identify 
the location, type and extent of the damage. The methodology for damage detection 
combines the information contained in a set of measurement modal data with the 
information provided by a family of competitive, parameterized, finite element 
model classes simulating plausible damage scenarios in the structure. The 
computational challenges encountered in Bayesian tools for structural damage 
identification are addressed. Simulated modal data from the Metsovo Bridge are 
used to validate the effectiveness of the methodology. 
 
Keywords: Bayesian inference, structural health monitoring, damage identification, 
model reduction, kriging, high performance computing. 
 

1  Introduction 

Bayesian inference is used for quantifying and calibrating uncertainty models in 
structural dynamics based on vibration measurements, as well as propagating these 
uncertainties in simulations for updating robust predictions of system performance, 
reliability and safety [1-3]. The Bayesian tools are based on Laplace methods of 
asymptotic approximation [4,5] and sampling algorithms [6]. These tools involve 
solving optimization problems, generating samples for tracing and then populating 
the important uncertainty region in the parameter space, as well as evaluating 
integrals over high-dimensional spaces of the uncertain model and loading 
parameters. They require a moderate to very large number of system re-analyses to 
be performed over the space of uncertain parameters. For high-fidelity finite element 
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(FE) models required in model-based structural health monitoring applications, the 
use of Bayesian technique may result in excessive computations.  

The computational challenges encountered in Bayesian tools for structural 
damage identification are addressed. An effective structural health monitoring 
system requires the development of computationally efficient techniques and 
specialized software that integrates information from physics-based mathematical 
models of structural components with the information collected from vibration 
measurements under various operational conditions, including normal operation 
under the action of everyday loads, wind loads and environmental effects (e.g. 
temperature), as well as sudden extreme load events such as moderate to strong 
earthquakes or strong winds. The specifications of a complete monitoring system of 
collecting and processing data for structural health monitoring based on physics-
based FE models [7,8] are reviewed and the importance of FE model updating 
techniques is emphasized. Novel methods to drastically reduce computations in 
SHM systems are presented.  

Specifically, high performance computing techniques are integrated with 
Bayesian techniques for structural damage identification to efficiently handle large-
order models of hundreds of thousands or millions degrees of freedom, and 
nonlinear actions activated during system operation. Fast and accurate component 
mode synthesis techniques [9] are proposed, consistent with the finite element model 
parameterization, to achieve drastic reductions in computational effort in a single 
finite element model simulation. Surrogate models are also used within multi-chain 
MCMC algorithms with annealing properties to substantially speed-up computations 
[10], avoiding full system re-analyses. Significant computational savings are also 
achieved for highly-parallelized operations manifested in system simulations and 
sampling algorithms, by adopting the Π4U software [11] to efficiently distribute the 
computations in available multi-core CPUs. Such techniques allow one to handle 
detailed linear and nonlinear models of structural components and thus improve 
SHM capabilities. The importance of the proposed computational framework is 
demonstrated for applications on model-based structural damage identification of 
civil infrastructure. The developed structural health monitoring methodology is 
illustrated using simulated damage and corresponding modal data from a bridge of 
the Egnatia Odos motorway.  

 
2  Damage identification methodology 
 
The Bayesian inference methodology for model class selection based on measured 
modal data is presented in order to detect the location and severity of damage in a 
structure. A substructure approach is followed where it is assumed that the structure 
is comprised of a number of substructures and damage in the structure causes 
stiffness reduction in one of the substructures. In order to identify which 
substructure contains the damage and predict the level of damage, a family of   

model classes 
1
, , mM M  is introduced, and the damage identification is 

accomplished by associating each model class to damage contained within a 
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substructure. For this, each model class 
i

M  is parameterized by a number of 

structural model parameters 
i
q  controlling the stiffness distribution in the 

substructure i , while all other substructures are taken to have fixed stiffness 
distributions equal to those corresponding to the undamaged structure. Damage in 
the substructure i  will cause stiffness reduction which will alter the measured modal 
characteristics of the structure. The model class 

i
M  that “contains” the damaged 

substructure i  will be the most likely model class to observe the modal data since 
the parameter values 

i
q  can adjust to the modified stiffness distribution of the 

substructure i , while the other model classes that do not contain the substructure i  
will provide a poor fit to the modal data. Thus, the model class 

i
M  can predict 

damage that occurs in the substructure i  and provide the best fit to the data. 
Bayesian inference is used to identify the most probable damaged substructure given 
the modal data [1,12].  

 
2.1 Bayesian model class selection 

 

Let 0ˆ{ˆ , , 1, , }N

r r
D R r mw= Î = f  be the available measured data consisting of 

modal frequencies ˆ
r  and modeshape components ˆ

r
f  at 0N  measured DOFs, 

where m  is the number of observed modes. Let  

( ; )
i i

P =q Μ { ( ; ),  ( ; )
r i i r i i

w q f qΜ Μ  0 ,NRÎ 1, , }r m=   be the predictions of the 

modal frequencies and modeshapes from a particular model in the model class iΜ  

corresponding to a particular value of the parameter set 
i
q .  

Before the selection of data, each model class 
i

Μ  is assigned a probability 

( )
i

P Μ  of being the appropriate class of models for modeling the structural 

behavior. Using Bayes’ theorem, the posterior probabilities ( | )
i

P DΜ  of the 

various model classes given the data D  is 
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where ( | ) 
i

p D Μ  is the probability of observing the data from the model class 
i

Μ , 

given by 
 

 ( | ) ( | , , ) ( , | )

i

i i i i i i i i i
p D p D d dp

Q

= òΜ Μ Μq s q s s q  (2) 

 

where { : }ui i i i   0q q q  is the domain of integration in Equation (2) that 

depends on the range of variation of the parameter set q
i
, and u

iq  are the values of 
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q
i
 at the undamaged condition of the structure. In Equation (2), q s( | , , )

i i i
p D M  is 

the likelihood of observing the data from a given model in the model class iΜ . For 

each model class iΜ  this likelihood is obtained using predictions q( ; )
i i

P Μ  and the 

associated probability models for the vector of prediction errors  ( ) ( ) ( )

1
[ , , ]i i i

m
e e= e  

defined as the difference between the measured modal properties involved in D  for 
all modes 1, ,r m=   and the corresponding modal properties predicted by a model 

in the model class 
i

Μ . The model error ( ) ( ) ( )[  ]i i i

r r r
ew f=e e  for the model class 

i
Μ  are 

assumed to be given separately for the modal frequencies and mode shapes from the 
prediction error equations: 
 

 q ( )ˆ ( ; ) ˆ 1, ,
r

i
r r i i r

e r mww w w= + = Μ  (3) 

 ( ) ( )ˆ ˆ( ; ) 1, ,i i

r r r i i r r
r mb= + = ff f q fΜ e  (4) 

 

where ( ) ( ) ( ) ( )ˆ /i T i i T i

r r r r r
b = f f f f , with ( ) ( ; )i

r r i i
ºf f q Μ , is a normalization constant 

that accounts for the different scaling between the measured and the predicted 
modeshape. The model prediction errors are due to modeling error and measurement 
noise. Assuming that they are modeled as independent Gaussian zero-mean random 

variables with variance 2

i
s , the likelihood is given by [13]  
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represents the measure of fit between the measured modal data and the modal data 
predicted by a particular model in the class iM ,   is the usual Euclidian norm, and 

0
( 1)

J
N m N= + .  

Also, given the model class iΜ , the prior probability distribution ( , | )
i i i

p q s Μ , 

involved in Equation (2), of the model and the prediction error parameters [ , ]
i i
q s  of 

the model class iΜ  are assumed to be independent and of the form 

( , | ) ( ) ( )
i i i iq sp p p=q s q sΜ . 

The optimal model class 
best

M  is selected as the model class that maximizes the 

probability ( | )
i

P DM  given by Equation (5). The probability distribution 
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( | , )
i i

p Dq M  quantifying the uncertainty in the parameters 
i
q  of a model class 

i
M  

given the data is obtained by applying Bayes’ theorem [1], as follows  
 

 
( | , , ) ( , | )

( , | , )
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i i i i i i
i i i

i

p D
p D

p D

p
=

Μ Μ
Μ

Μ
q s q s

q s   (8) 

 
Where ( | )

i
p DΜ  is the evidence of the model class iΜ . The most probable value of 

the parameter set that corresponds to the most probable model class 
best

Μ  is denoted 

by ˆ
best
q . 

Using the Bayesian model selection framework in Section 2, the model classes 
are ranked according to the posterior probabilities based on the modal data. The 
most probable model class 

best
M  that maximizes ( | )

i
p DM  in Equation (5), through 

its association with a damage scenario on a specific substructure, will be indicative 

of the substructure that is damaged, while the most probable value ˆ
best
q  of the model 

parameters of the corresponding most probable model class 
best

M , compared to the 

parameter values of the undamaged structure, will be indicative of the severity of 
damage in the identified damaged substructure.  

The percentage change 
i

Dq  between the best estimates of the model parameters 

ˆ
i
q  of each model class and the values 

,
ˆ
i und
q  of the reference (undamaged) structure 

is used as a measure of the severity (magnitude) of damage computed by each model 
class , 1, ,

i
i m= M .  

The selection of the competitive model classes , 1, ,
i
i m= M  depends on the 

type and number of alternative damage scenarios that are expected to occur or 
desired to be monitored in the structure. The m  model classes can be introduced by 
a user experienced with the type of structure monitored. The prior distribution 

( )
i

P M  in Equation (5) of each model class or associated damage scenario is selected 

based on the previous experience for the type of bridge that is studied. For the case 
where no prior information is available, the prior probabilities are assumed to be 
equal, ( ) 1 /

i
P m=M , for all introduced damage scenarios. 

 
3  Computationally Efficient Techniques 
 
The Bayesian tools for FE model selection and parameter estimation used for 
structural damage identification are Laplace methods of asymptotic approximation 
and stochastic simulation algorithms. These tools require a moderate to very large 
number of repeated system analyses to be performed over the space of uncertain 
parameters. Consequently, the computational demands depend highly on the number 
of system analyses and the time required for performing a system analysis. The 
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Transitional MCMC (TMCMC) algorithm [14] is employed in this work to carry out 
the computations. High performance computing techniques are integrated within the 
TMCMC tool to efficiently handle large number of DOF in FE models. Specifically, 
fast and accurate component mode synthesis techniques [9] are used, consistent with 
the FE model parameterization, to achieve drastic reductions in computational effort. 
Surrogate models [10] are also used to replace full system simulations by fast 
approximations. Finally computational savings are achieved by adopting parallel 
computing algorithms to efficiently distribute the computations in available multi-
core CPU [15]. Details of such HPC techniques are presented in [11] where the 
software Π4U is introduced to perform a model non-intrusive Bayesian analysis in a 
parallel environment.  

The model reduction techniques and the surrogate modeling based on kriging 
algorithm are briefly described in the following.  
 
3.1 Model Reduction 
 
At the model level, model reductions techniques have been proposed to considerably 
reduce the size of the stiffness and mass matrices by several orders of magnitude. In 
particular, computational efficient model reduction techniques based on component 
mode synthesis have been developed to handle certain parameterization schemes for 
which the mass and stiffness matrices of a component depend either linearly or 
nonlinearly on only one of the free model parameters to be updated, often 
encountered in FE model updating formulations. In such schemes, it has been shown 
that the repeated solutions of the component eigen-problems are completely avoided, 
reducing substantially the computational demands, without compromising the 
solution accuracy. For the case of linear dependence of the stiffness matrix of a 
structural component on a model parameter, the methodology is presented in [9]. 
The method can readily be extended to treat the case of nonlinear dependence of the 
stiffness matrix of a structural component on a model parameter. 
 
3.2 Surrogate models 
 
At the level of the TMCMC algorithm, an adaptive kriging model has been 
introduced in [10,15] to reduce the computational time by avoiding the full model 
runs at a large number of sampling point in the parameters space. This is done by 
exploiting the function evaluations that are available at the neighbour points from 
previous full model runs in order to generate an estimate at a new sampling point in 
the parameter space. Surrogate models are well-suited to be used within the 
TMCMC algorithm, resulting to the X-TMCMC algorithm proposed in [10]. In X-
TMCMC, the kriging technique is used to approximate the function evaluation at a 
sampling point using the function evaluations at neighbour points in the parameter 
space. To ensure a high quality approximation, certain conditions are imposed in 
order a surrogate estimate be accepted. Details can be found in [10]. In contrast to 
the model reduction technique in which several orders of magnitude reduction in 
computational effort may be achievable, for surrogate models within TMCMC only 
an order of magnitude reduction in the number of full model runs involved in 
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TMCMC algorithm has been reported which results in additional computational 
savings.  

 
4  Application 
 
The methodology is demonstrate using a simulated damage scenario and simulated 
modal data from the Metsovo bridge, shown in Figure 1. The bridge is the highest 
reinforced concrete bridge of Egnatia Odos motorway located in Greece, with the 
height of the taller pier P2 equal to 110m. The total length of the bridge is 537m. 
The commercial software package COMSOL Multiphysics is used for developing 
the FE model of the bridge based on the design plans, the geometric details and the 
material properties of the structure. The following nominal values of the material 
properties of the concrete deck, piers and foundations are considered: Young’s 
modulus 37E Gpa= , Poison’s ratio 0.2n =  and density 32548kg mr= . For the 
piers and the foundation the nominal value of the Young’s modulus is 34E GPa= . 
A detailed FE model is created using three-dimensional tetrahedron quadratic 
Lagrange finite elements. The selected model has 97,636 finite elements and 
562,101 DOF.  

 

 

 
Figure 1: Metsovo bridge. 
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[2]M               [4]M  
        

         
 

[5]M               [8]M  
 

  
 

[10]M  
 

Figure 2: Parameterized FE models corresponding to single damage scenarios. 

 
To demonstrate the methodology, the Metsovo bridge is divided into 15 

substructures. A number of competitive model classes [ ]iM  and [ , ]i jM  are introduced 
to monitor various probable damage scenarios for the bridge corresponding to single 
and multiple damages at different substructures. The model class [ ]iM  contains one 
parameter related to the stiffness of substructure i . Representative models 
corresponding to a single damage scenario at different substructures are shown in 
Figure 2. These models can monitor damage associated with the stiffness reduction 

in the i  substructure. The model class [ , ]i jM  contains two parameters related to the 
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stiffness of substructures i  and j . Representative models are shown in Figure 3 and 
they can be used to monitor damage associated with the stiffness reduction in either 
substructures i  and j  or simultaneously at both substructures. A five-parameter 
model shown in Figure 3 is also included in the family of model classes to monitor 
simultaneous damages at five different substructures. This five-parameter model 
class is denoted by [5 ]par-M .  

All model classes are generated from the updated FE model of the undamaged 
structure. For each model class, CMS techniques are used to alleviate the 
computational burden associated with the model updating problems that needs to be 
solved. For this, two different cases of reduced-order FE models are considered. The 
first case corresponds to models obtained by reducing the internal DOF, while the 
second case corresponds to models obtained by reducing both the internal and 
interface DOF.  

 

               
[7,10]M              [8,10]M  

 
 

  
[2 par]-M  

 
Figure 3: Parameterized FE models corresponding to multiple damage scenarios. 

 
The number of components introduced for each model class depends on the 

parameterization. Specifically, the model class [ ]iM  is divided into two, three or four 
components. One component is selected to be the substructure i  shown in Figure 2, 
while the remaining components are selected to be the parts of the remaining 

structure that connect to the interfaces of component i . The model classes [1]M , 
[10]M , [14]M  and [15]M  have one interface, the model classes [2]M , [5]M  to [8]M , [11]M  
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and [12]M  have two interfaces, while the model classes [3]M , [9]M  and [13]M  have 
three interfaces with the remaining structure. A similar division into components is 
introduced for the family of [ , ]i jM  model classes. For example, model class [10,8]M  is 
divided into four components, the first two components coincide with the physical 
substructures 10 and 8, the third includes the physical substructures 9, 11 to 15 and 
the fourth includes the substructures 1 to 7. The components in the [5 ]par-M  model 
class are kept the same as the ones shown in Figure 3.  

 
Model  
Class 

Evidence
   (log) 

iqD  
 (%) 

DOF  
(NFES) 

CE 
(Min) 

M[2]
 954.46 +27.9    1,724 

  (8,000)
123 

M[4]
 954.99 -15.7       989 

  (8,000)
  42 

M[5]
 988.17 -47.8    1,747 

  (9,000)
134 

M[8]
 1005.5 -31.3    1,824 

  (9,000)
170 

M[10]
 1723.1 -29.2    1,393 

(12,000)
173 

M[10,7]
 1722.5 -29.0 

+4.0 
   1,829 
(14,000)

245 

M[10,8]
 1718.7 -29.0 

+1.9 
   2,485 
(14,000)

509 

-[5 ]parM  1700.4 -1.3 
-28.3 
+1.0 
+2.3 
+0.5 

   3,586 
(19,000)

759 

Total    2155 
 
Table 1: Damage identification results, model DOF, number of FE simulations 

(NFES) and computational effort (CE) in minutes for each model classes A. 

 
The effectiveness of the proposed methodology, in terms of computational 

efficiency and accuracy, is investigated by introducing a simulated damage at the 
highest pier. The inflicted damage corresponds to a stiffness reduction of 30% the 
nominal stiffness value. Simulated, noise contaminated, measured modal 
frequencies and mode shapes are generated for the damaged structure. Among all 
models in Figure 2 and 3, [10]M , [10, ]iM  and  [5 ]par-M  contain the actual damage.  

The model class selection and the model updating is performed using the 
TMCMC algorithm with 1000 samples per TMCMC stage. The results for the log 
evidence for representative model classes and the corresponding magnitude of 
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damages 
i
qD  predicted by each model class are reported in Tables 1 and 2 for the 

two cases A and B of reduced-order models. Herein, for demonstration purposes, the 
percentage change 

i
qD  between the mean estimates of the model parameters of each 

model class and the corresponding values of the reference (undamaged) structure 
measures the severity (magnitude) of damage computed by each model class.  
 

Model  
Class 

Evidence
   (log) 

iqD  
 (%) 

DOF 
(NFES) 

CE 
(Min) 

M[2]
 954.93 +26.5       438 

  (8,000) 
3.5 

M[4]
 955.08 -15.2       381 

  (8,000) 
3 

M[5]
 989.32 -47.3       441 

  (9,000) 
3.6 

M[8]
 1006.4 -30.8      408 

  (9,000) 
0.5 

M[10]
 1723.3 -29.2       388 

(12,000) 
4.6 

M[10,7]
 1723.1 

 
-29.0 
+3.9 

      425 
(13,000) 

5.4 

M[10,8]
 1719.0 -29.0 

+1.3 
      433 
(13,000) 

5.5 

-[5 ]parM  1698.2 
 

-0.5 
-28.5 
+0.9 
+1.5 
+0.5 

      592 
(19,000) 

14 

Total    40.1 
 
Table 2:  Damage identification results, model DOF, number of FE simulations 

(NFES) and computational effort (CE) in minutes for model classes B. 

 
Comparing the log evidence of each model class and also the corresponding 

magnitude of damages 
i
qD  predicted by each model class in Table 1 it is evident 

that the proposed methodology correctly predicts the location and magnitude of 
damage using the reduced-order model classes. Specifically, based on the reduced-
order models A, the most probable model class is [10]M  which predicts a mean 
29.2% reduction in stiffness which is very close to the inflicted 30%. Among all 
alternative model classes [10]M , [10,7]M , [10,8]M  and [5 ]par-M  that contain the actual 
damage, the proposed methodology favors the model class [10]M  with the least 
number of parameters and it predicts the five parameter model class [5 ]par-M  as the 
least probable model. This is consistent with theoretical results for model class 
penalization for over parameterization, available for Bayesian model class selection 
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[5]. The model classes that do not contain the damage are not favored by the 
proposed methodology. Based on the reduced-order models B in Table 2, the 
predictions of the location and severity of damage are very close to the ones 
obtained from the reduced-order models A for most model classes included in Table 
1. In particular, the most probable model class for models B is also predicted to be 

[10]M , while the mean damage severity is predicted to correspond to 29.2% reduction 
in stiffness, exactly the same as the one predicted with the reduced-order models A. 
In addition the use of kriging within TMCMC (algorithm K-TMCMC) also provides 
accurate estimates of the evidence that lead to damage identification results that are 
identical to the ones obtained without the kriging estimates.  

The resulting number of FE model re-analyses and the computational demands in 
minutes for each model class are also is shown in Tables 1 and 2. The number of FE 
model runs for each model class depends on the number of TMCMC stages which 
vary for each model class from 8 for the one-parameter model class to 19 for the 
five-parameter model class. The resulting variable number of stages per model class 
was automatically obtained from the TMCMC algorithm by keeping constant the 
value tolCov of the TMCMC parameter to tolCov 1.0= .  

The parallelization features of TMCMC [11] were also exploited, taking 
advantage of the available four-core multi-threaded computer unit to simultaneously 
run eight TMCMC samples in parallel. For comparison purposes, the computational 
effort for solving the eigenvalue problem of the original unreduced FE model is 
approximately 139 seconds. Multiplying this by the number of TMCMC samples 
shown in Tables 1 and 2 and considering parallel implementation in a four-core 
multi-threaded computer unit, the total computational effort for each model class is 
expected to be of the order of 3 to 7 days for 8,000 to 19,000 samples, respectively.  

For all eight model classes considered in Tables 1 and 2, the total computational 
effort using the unreduced models is estimated to be approximately one month and 
seven days. In contrast, for the reduced-order models A, the computational demands 
for running all model classes are reduced to 30 hours (2155 minutes as shown in the 
last row of Table 1), while for the reduced-order models B these computational 
demands are drastically reduced to 40 minutes (see Table 2). The use of surrogate 
models such as K-TMCMC [10] reduces the computational effort by an additional 
85% making the total computational effort equal to approximately 6 minutes.  

It is thus evident that a drastic reduction in computational effort for performing 
the structural identification based on a set of monitoring data is achieved from 
approximately 37 days for the unreduced model classes to 40 minutes for the 
reduced model classes B, without compromising the predictive capabilities of the 
proposed damage identification methodology. This results in a drastic reduction in 
the computational effort of more than three orders of magnitude. Additional 
substantial reductions in computational effort are possible if one has available more 
computer workers to efficiently distribute the MCMC samples in each TMCMC 
stage, as well as to run the different model classes, corresponding to different 
possible damage scenarios, in parallel. The availability of such computer workers is 
expected to yield the damage identification results in a few seconds, provided that a 
database of reduced parameterized finite element models that cover all damage 
scenarios have been introduced.    
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6  Conclusions 
 
A structural identification framework based on vibration measurements was outlined 
in this work. The framework integrates Bayesian computing tools with high fidelity 
finite element models of the monitoring structure. It requires a large number of finite 
element model analyses that can result in excessive computational effort. HPC 
techniques were proposed to drastically reduce the computational burden by several 
orders of magnitude. The effectiveness of the algorithms, in terms of computational 
efficiency and accuracy was demonstrated using simulated modal data from the 
Metsovo Bridge of the Egnatia Odos motorway in Greece. The proposed framework 
can be used by managing authorities as part of an intelligent structural management 
system to provide a useful tool for structural monitoring, structural integrity 
assessment and design cost-effective maintenance strategies. 
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